
AAAI-97 Tutorial SP2Nayak/Williams SP2-52

Solving Combinatorial Optimization
Problems

AAAI-97 Tutorial SP2Nayak/Williams SP2-53

Combinatorial optimization problem

• A combinatorial optimization problem is a tuple (V, f, c)
• V is a set of discrete variables with finite domains
• An assignment maps each v ∈ V to a value in v’s domain
• f is a function that decides feasibility of assignments

– f(a) returns true if and only if assignment a is feasible

• c is a function that returns the cost of an assignment
– c(a) is the cost of assignment a
– assignment a1 is preferred over assignment a2 if c (a1) < c(a2)

• Problem:
min c(V) st f(V)

AAAI-97 Tutorial SP2Nayak/Williams SP2-54

MI/MR as combinatorial optimization

• MI
– variables: components with domains the possible modes

• an assignment corresponds to a candidate diagnosis

– feasibility: consistency with observations
– cost: probability of a candidate diagnosis

• MR
– variables: components with domains the possible modes

• an assignment corresponds to a candidate repair

– feasibility: entailment of goal
– cost: cost of repair

AAAI-97 Tutorial SP2Nayak/Williams SP2-55

Simple cost model

• Each variable has an associated cost of assigning it a value
– c(vi= li) is the cost of assigning value li to variable vi

• Cost of a complete assignment is the sum of the costs of the
individual variable assignments
– if assignment a is v1=l1,…,vn=ln then c(a) = Σi c(vi=li)

• Costs of all variable values are non-negative
– c(vi= li) • 0

• Each variable has a minimum cost value with cost 0
• Generating a least cost assignment is straightforward

– each variable is assigned a value with cost 0

AAAI-97 Tutorial SP2Nayak/Williams SP2-56

Using the simple cost model for MI

• Most probable diagnosis with independent component failures
[de Kleer & Williams 89; de Kleer 91; Williams & Nayak 96]

– p(v1=l1,…,vn=ln) = p(v1=l1) × … × p(vn=ln)
– let mi be the most probable mode for component vi

– c(vi=li) = − log(p(vi=li) / p(vi=mi))
⇒all costs are non-negative with c(vi=mi) = 0
⇒for any assignments a1 and a2, c(a1) Š c(a2) iff p(a1) • p(a2)

• Infinitesimal probabilities of independent failures
[de Kleer 93; Pearl 92]

� κ(vi=li) = n means that p(vi=li) is O(εn) for infinitesimal ε
� κ(v1=l1,…, vn=ln) = κ(v1=l1)+…+κ(vn=ln)
⇒ let c(vi=li) = κ(vi=li)

• note: for each vi there is an mi such that κ(vi=mi) = 0

AAAI-97 Tutorial SP2Nayak/Williams SP2-57

Limitations of the simple cost model

• Dependent faults [Srinivas & Nayak 96]

– probabilistic dependence between component failures captured using a
Bayesian network

– need to use a special enumeration algorithm

AAAI-97 Tutorial SP2Nayak/Williams SP2-58

Best first search

• Used in [de Kleer & Williams 89; Dressler & Struss 94; Williams & Nayak 96]

function BFS(V, f, c)
Initialize Agenda to a least cost assignment
Initialize Solutions to the empty set
while Agenda is non-empty do

Let A be one of the least cost assignments in Agenda
Remove A from Agenda
if f(A) is true then Add A to Solutions endif
Add immediate successor assignments of A to Agenda
if enough solutions then return Solutions endif

endwhile
return Solutions

end BFS

AAAI-97 Tutorial SP2Nayak/Williams SP2-59

Required subroutines for BFS

• Generating a least cost assignment
• Generating the immediate successors of an assignment

– completeness: every feasible assignment must be the (eventual)
successor of the least cost assignment

– monotonicity: if b is an immediate successor of a, then c(a) Š c(b)

• Deciding that enough solutions have been generated
– maximum number of solutions
– minimum difference between cost of best feasible solution and the cost

of the best assignment on the Agenda
– minimum difference between costs of the last two assignments

• Agenda management as a priority queue

AAAI-97 Tutorial SP2Nayak/Williams SP2-60

Representing assignments

• Each assignment is represented by the set of variable values
that differ from the least cost assignment

• Least cost assignment {v1=a1, v2=a2, v3=a3}
• Assignment {v1=a1, v2=a2, v3=b3} represented as just {v3=b3}

dom(v1) = {a1, b1, c1}
dom(v2) = {a2, b2, c2}
dom(v3) = {a3, b3, c3}

c(vi=ai) = 0
c(vi=bi) = 1
c(vi=ci) = 2

AAAI-97 Tutorial SP2Nayak/Williams SP2-61

Basic successor function

• Assignment A2 is an immediate successor of assignment A1 if
– the representation of A1 is a subset of the representation of A2; and
– the representations of A1 and A2 differ by exactly one variable value
– e.g., {v3=b3} is an immediate successor of {}
– e.g., {v3=b3 , v2=b2} is an eventual successor, but not an immediate

successor, of {}

• Definition of immediate successors is
– complete: all assignments are eventual successors of the least cost

assignment
– monotonic: if A2 is an immediate successor of A1, then c(A1) Š c(A2)

AAAI-97 Tutorial SP2Nayak/Williams SP2-62

2

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=c1
v2=b2

v1=c1
v2=c2

v2=b2
v3=b3

v2=c2
v3=b3

v2=b2
v3=c3

v2=c2
v3=c3

v1=b1
v3=c3

v1=c1
v3=b3

v1=b1
v3=b3

v1=c1
v3=c3

v1=b1
v2=b2
v3=b3

v1=b1
v2=b2
v3=c3

v1=b1
v2=c2
v3=b3

v1=c1
v2=b2
v3=b3

v1=c1
v2=c2
v3=b3

v1=c1
v2=b2
v3=c3

v1=b1
v2=c2
v3=c3

v1=c1
v2=c2
v3=c3

0

1 2 1 2 1 2

4

3 4 4 4 5 5 5 6

Successor lattice

dom(v1) = {a1, b1, c1}
dom(v2) = {a2, b2, c2}
dom(v3) = {a3, b3, c3}

c(vi=ai) = 0
c(vi=bi) = 1
c(vi=ci) = 2

AAAI-97 Tutorial SP2Nayak/Williams SP2-63

Conflicts

• A conflict is a partial assignment that is guaranteed to be
infeasible
– any assignment that contains (or is subsumed by) a conflict is infeasible
– [Davis 84; Genesereth 84; de Kleer & Williams 87]

– e.g., if the partial assignment {v3=a3 , v2=a2} is a conflict, then the
assignment {v3=a3 , v2=a2 , v1=b1} is infeasible

• Requirement: whenever f determines that an assignment is
infeasible, it returns a conflict
– if assignment A is infeasible, then A itself is trivially a conflict
– ideally, f should return a minimal infeasible subset of A as a conflict
– conflicts can be generated using dependency tracking in a truth

maintenance system

AAAI-97 Tutorial SP2Nayak/Williams SP2-64

Focusing with conflicts

• Lemma: Let A2 be an (eventual) successor of A1 such that A1 is
subsumed by a conflict N, but A2 is not. Then there exists an
immediate successor A3 of A1 that is not subsumed by N such
that A2 is an (eventual) successor of A3.

⇒ If an assignment A1 is infeasible and is subsumed by a conflict
N, then we need only generate those immediate successors of
A1 that are not subsumed by N
– the lemma ensures that completeness is preserved
– the smaller the conflict, the fewer the immediate successors

A1

A3

A2

AAAI-97 Tutorial SP2Nayak/Williams SP2-65

{}0

Initializing the agenda

Untouched

On agenda

AAAI-97 Tutorial SP2Nayak/Williams SP2-66

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

0f({}) is false
(v1=a1) is a conflict

1 2

Assignment {} is infeasible

Infeasible

AAAI-97 Tutorial SP2Nayak/Williams SP2-67

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

0f({v1=b1}) is false
(v1=b1, v2=a2) is a conflict

1 2

2
3

Assignment {v1=b1} is infeasible

AAAI-97 Tutorial SP2Nayak/Williams SP2-68

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

v1=b1
v2=b2
v3=b3

v1=b1
v2=b2
v3=c3

0f({v1=b1 , v2=b2}) is true

1 2

2
3

3 4

Feasible

Least cost feasible assignment found

AAAI-97 Tutorial SP2Nayak/Williams SP2-69

Decreasing agenda size

• Agenda size can be problematic in a best first search
– for a branching factor b, agenda grows to size O(bk) after k checks
– inserting b elements into the agenda after k checks is O(b logb+b logk)

• Immediate successors of an assignment are totally ordered
– non-least cost successors only checked after least cost successor

⇒ Insert only least cost successor onto agenda
Sort remaining successors
Each assignment has exactly two successors
– least cost immediate successor
– next more expensive sibling

• Size of the agenda is bounded by the number of checks
– inserting b successors after k checks is O(b logb + 2logk)

AAAI-97 Tutorial SP2Nayak/Williams SP2-70

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

0f({}) is false
(v1=a1) is a conflict

1 2

Only {v1=b1} added to agenda

Not yet added to agenda

AAAI-97 Tutorial SP2Nayak/Williams SP2-71

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

0f({v1=b1}) is false
(v1=b1, v2=a2) is a conflict

1 2

2
3

Immediate successor and sibling of
{v1=b1} added to agenda

AAAI-97 Tutorial SP2Nayak/Williams SP2-72

{}

v1=b1 v1=c1 v2=b2 v2=c2 v3=b3 v3=c3

v1=b1
v2=b2

v1=b1
v2=c2

v1=b1
v3=c3

v1=b1
v3=b3

v1=b1
v2=b2
v3=b3

v1=b1
v2=b2
v3=c3

0f({v1=b1 , v2=b2}) is true

1 2

2
3

3 4

Least cost feasible assignment found

